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METHODOLOGY

Simulation‑based validation of activity 
logger data for animal behavior studies
Jiawei Chen1*  , Geoffrey Brown1 and Adam Fudickar2 

Abstract 

Bio-loggers are widely used for studying the movement and behavior of animals. However, some sensors provide 
more data than is practical to store given experiment or bio-logger design constraints. One approach for overcoming 
this limitation is to utilize data collection strategies, such as non-continuous recording or data summarization that 
may record data more efficiently, but need to be validated for correctness. In this paper we address two fundamental 
questions—how can researchers determine suitable parameters and behaviors for bio-logger sensors, and how do 
they validate their choices? We present a methodology that uses software-based simulation of bio-loggers to validate 
various data collection strategies using recorded data and synchronized, annotated video. The use of simulation 
allows for fast and repeatable tests, which facilitates the validation of data collection methods as well as the configu-
ration of bio-loggers in preparation for experiments. We demonstrate this methodology using accelerometer loggers 
for recording the activity of the small songbird Junco hyemalis hyemalis.
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Background
Annually, animals across the planet make regional to 
long-distance movements that result in the transport of 
billions of tons of biomass [1]. Because of their impact 
on the daily and seasonal dynamic nature of ecosystems, 
animal movements and especially movement patterns are 
of great research interest [2]. Bio-logging is useful when 
direct observation of animals is impractical, or when 
continuous monitoring over long time periods is desired 
[3–7]. Due to the potentially large timescales involved 
in such studies, the direct storage of unprocessed sen-
sor data places high demands on energy and memory, 
potentially beyond the limits of practicality [8–10]. Vari-
ous data collection strategies can be employed to reduce 
resource consumption, but they must be validated to 
ensure they do not affect the validity of the data.

In this paper we describe a methodology that enables 
researchers to combine "raw" bio-logger data with video 
to determine the impact of such strategies, and by exten-
sion, visualize the relationship between video and sensor 
logs of animal behavior. Our bio-logger validation proce-
dure involves collecting continuous, uncompressed sen-
sor data and synchronized video, simulating bio-loggers 
in software using the recorded sensor data, and evaluat-
ing their ability to detect movements shown on video. 
The benefit of simulation over purely empirical test-
ing is that it allows for faster, more repeatable tests that 
make more effective use of experiment data, which may 
be especially attractive to studies involving non-captive 
animals.

We have also developed a software application, 
QValiData, to facilitate the experimental procedure by 
synchronizing video, assisting with video analysis, simul-
taneously playing back synchronized video and data 
tracks, and running bio-logger simulations. With the 
proposed methodology and software tool, we hope to 
increase confidence in the reliability of bio-loggers that 
utilize sampling and summarization and improve the 
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efficiency of validation experiments aimed towards such 
bio-loggers. We demonstrate the use of our methodol-
ogy with accelerometer data collected from captive Dark-
eyed Juncos (Junco hyemalis hyemalis) to validate the 
summarization strategy in preparation for future activity 
logging with both captive and free-ranging animals.

Challenges of long‑term bio‑logging
Despite technological advances, power and memory still 
impose limits on the endurance of bio-loggers and data 
quality in long-term experiments. In particular, mass 
limitations may restrict logger energy budgets, and as 
a result, the amount of data that can be collected [11]. 
Excessive mass restricts the range of species for which 
such loggers are usable, since it may influence animal 
behavior [5, 12, 13]. For instance, it is common practice 
in bird studies to limit logger mass to 3–5% of the ani-
mal’s body mass to mitigate this possibility [11].

High data rates require increased processor activ-
ity, resulting in increased energy usage. In addition, 
increased storage requirements may necessitate the 
use of additional storage media, such as external flash 
memory, which further increases energy demand. Since 
a battery’s mass is roughly proportional to its capac-
ity (Table 1), increasing battery capacity will inevitably 
increase total logger mass. For bio-loggers approaching 
the mass limit of a particular species, the energy and 

memory budgets imposed by logger mass may preclude 
continuous high-speed recording altogether [4, 8, 9, 
14].

When runtime extensions cannot be made through 
hardware modification, the standard approaches to 
overcoming logger limitations are to rate limit data col-
lection (sampling) [16] and/or store only data summa-
ries (summarization) [8, 10, 14, 17].

Sampling
Sampling (Fig.  1) involves recording full-resolution 
data in short bursts. Many studies already make use of 
loggers that utilize sampling at fixed intervals, or “syn-
chronous” sampling [18–20]; however, this method 
may miss events that occur between sampling periods 
and will additionally record periods of inactivity. An 
improvement upon this method is “asynchronous” sam-
pling, which only records when activity of interest is 
detected by sensors [21]. This increases the likelihood 
of recording desired movements and more effectively 
utilizes both energy and storage. Although our method-
ology can be used to validate either sampling method, 
asynchronous sampling presents a more interesting use 
case for the simulation component.

Asynchronous sampling is capable of recording 
the dynamic aspects of individual movement bouts, 
which makes it suitable in studies where the move-
ments themselves are of interest [3, 16, 21–23]. Since 
recording only occurs when a movement of interest is 
detected, activity-based sampling can lead to significant 
efficiency improvements when movements of interest 
are sparse. However, this recording method sacrifices 
continuity, which may lead to a loss of context, and 
additionally may miss activity that is necessary for col-
lecting more general parameters such as total energy 
expenditure [24, 25].

Table 1  Battery energy density of Seiko MS-series rechargeable 
batteries [15]

Capacity 
(mAh)

Nominal 
voltage (V)

Energy 
storage 
(Joules)

Mass (g) Energy 
density 
(Joules/g)

3.4 2.5 30.6 0.17 180

5 2.5 45.0 0.23 196

11 2.5 99.0 0.47 211

Fig. 1  Asynchronous sampling and summarization reduce the size of recorded data. Both methods require an activity detector to determine when 
an interesting event is occurring
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Summarization
If continuous recording is desired but bio-logger design 
or experiment requirements preclude full-resolution 
recording, sensor data can be analyzed on-board the 
logger and observations extracted, in a process known 
as “summarization” [10] (Fig.  1). For instance, move-
ment data can be summarized as a numerical value cor-
responding to frequencies detected within movement 
data or the level of activity detected [8] (“characteristic” 
summarization), or even a simple binary value or count 
representing the presence or absence of particular move-
ments of interest (“behavioral” summarization).

Although summarized data are unable to record the 
unique dynamics of individual movement bouts, it can 
provide insight into characteristics and trends of an ani-
mal’s activity over an extended period of time [8, 10, 24, 
25]. In addition, sampling bio-loggers can be used to aug-
ment ethogram studies once behaviors are characterized. 
Currently, many bio-logging studies focus on developing 
models to classify various behavior types [6, 19, 20, 26–
29]. If further study or quantification of these behaviors is 
desired, the incorporation of these models into summari-
zation-type bio-loggers can be used to count the occur-
rences of specific behaviors over long periods of time, 
allowing for improved recording times in comparison to 
conventional, continuously sampling loggers.

Activity detection
In either method, there arises the need to determine 
which portions of data are worth recording, and how 
to implement an activity detector to reliably differenti-
ate these from the remainder of the data in real-time 
(Fig.  1). To maximize storage and energy efficiency, 
activity detection must be sensitive enough to detect 
all interesting events but also selective enough to avoid 
recording unnecessarily. In addition, activities that are 
detected must be recorded at a satisfactory level of detail 
for a given experiment’s objectives. Since on-board 
activity detection methods operate unsupervised, and 
unrecorded data are unrecoverable [3, 6, 10], it is impos-
sible to ascertain their correctness or completeness from 
recorded data alone. As a result, recording strategies that 
employ activity detection leave open two questions: do 
they accurately reflect "raw" sensor data, and what ani-
mal behaviors can we infer from these data? We seek to 
address the first question by validating recording strate-
gies in advance and discuss possible approaches to the 
second.

Ensuring validity of data
Activity detection methods can be validated in controlled 
environments, in which the animal under study, with a 

logger attached, is closely observed while performing 
motions of interest that are representative of behavior 
similar to those exhibited in the field [4, 9]. In addition to 
the logger, at least one other independent, synchronized 
source of movement data is required to cross-check the 
data produced by activity detection. For instance, some 
experiments derive this validation source from time-
stamped direct visual observations or video recordings 
[3, 4, 9, 19–23, 26, 29–31].

Regardless of observation method, these validation 
experiments serve to associate motions recorded by the 
logger with known behaviors detected through an inde-
pendent means. When particular motions of interest are 
found, the corresponding sensor signatures can then be 
characterized to develop a model that can automatically 
classify future events without human intervention. This 
model can then be applied to loggers for data collection 
experiments in the field to perform data analysis and 
compression in situ.

One of the issues with experimental validation is that, 
since the logger under test often cannot be re-configured 
once deployed, making adjustments to the logger’s con-
figuration requires a completely new trial. Furthermore, 
since loggers are often the only source of observation and 
they discard large portions of this data, incorrect classi-
fications (such as missed events or false positives) may 
be difficult to diagnose or replicate. Additionally, since 
animal movement is often variable [32], the types and 
intensities of certain movements vary across trials and 
individuals. As a result, many trials are needed to fine-
tune activity detection parameters, and the effects of 
incremental improvements are difficult to quantify.

Methods
Our validation procedure consists of gathering observa-
tions of an animal’s movements, associating those obser-
vations with raw sensor data of the movements, and then 
running a series of simulations using the recorded sen-
sor data (Fig. 2) to develop and evaluate the performance 
of activity detection methods. When a suitable configu-
ration has been found, it is then applied to loggers in an 
actual experiment. We have developed a software appli-
cation, QValiData, to manage the data generated by these 
trials, and to assist in analyzing video, performing video 
magnification, and simulating bio-loggers. The validation 
workflow is illustrated in (Fig. 3).

Movement data in our study were collected from a 
small sparrow, the Dark-eyed Junco. Juncos are com-
mon across North America and thrive in captivity, 
making them ideal for the current study. Since some 
juncos undergo seasonal migration and in turn exhibit 
seasonal variability in activity, we were primarily inter-
ested in using activity loggers to track trends in their 
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general activity levels leading up to and during migra-
tion periods [33]. Thus, we used the validation pro-
cedure to detect periods of significant activity, which 
can then be applied to summarizing loggers. Although 
our application was originally targeted towards accel-
erometer-based activity loggers on small songbirds, 
this procedure is applicable to other species as well 
as other kinds of movement loggers, accommodating 
the wide variety of sensor types currently employed in 
movement studies [8, 15].

Data collection
The purpose of the data collection phase is to obtain as 
many examples of desirable activities as possible in a 
short span of time, in order to capture detailed dynamics 
of an animal’s movements for the simulation. To obtain 
continuous, raw sensor data, we developed a custom 
“validation logger” (Fig.  3) that continuously recorded 
full-resolution sensor samples at a high rate, at the cost 
of significantly reduced run time on the order of 100 h, 
as opposed to several months. Since individual data 

Fig. 2  Simulated loggers provide more information and opportunities for adjustments without additional data. In our simulation, the sensor data 
display is darkened in areas where the simulated logger did not record activity, to visualize its simulated data while additionally allowing the user to 
see the data that would have been discarded

Fig. 3  The validation workflow visualized. Video and sensor data from a validation experiment are collected and synchronized in time to one 
another. These data are then visualized and annotated where activity is detected. Simulations of the experiment logger are conducted using 
the annotated data in order to tune activity detection parameters. When suitable parameters are found, they can be used to configure the final 
experiment loggers. In our experiment, the validation and experiment loggers are approximately 1.4 and 0.6 g in mass, respectively
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collection runs were designed to be less than an hour in 
duration, the loss of extended run time was an accept-
able compromise. Apart from differences in operational 
behavior, the sensors in the validation logger were identi-
cal to those used in the field [4].

In addition to using the validation logger, we recorded 
the animal’s movements with a video camera, which later 
allowed us to correlate visual observations of motions of 
interest with sensor values. To ensure that the animal was 
visible throughout the entire video, we conducted these 
experiments in a small room and used a camera equipped 
with a wide-angle lens [34]. The room we chose had 
solid-colored walls and was brightly lit, which facilitated 
locating the animal both manually and via computer 
vision. The animal was then allowed to move throughout 
the room while being recorded by both the logger and 
video camera. In some trials, a small remote-controlled 
vehicle was driven around the room to encourage move-
ment, while in other trials, occasional branch-tapping 
and movements made by human observers served the 
same purpose.

For our particular validation experiment, we captured 
five recordings across four unique individuals, each con-
sisting of 20 to 30 min of video and uncompressed accel-
erometer data. Video was recorded at 640 × 480 pixels 
and 30 frames per second, while accelerometer data were 
captured at the validation logger’s full 100 Hz sample rate 
(25 Hz effective bandwidth).

Synchronization and simultaneous playback
The need for synchronized, simultaneous data and video 
playback has been made apparent by other validation 
experiments and is crucial for the accuracy of video-
based validation [31, 35]. However, the camera and sen-
sors often operate at substantially different sampling 
rates and their internal clocks may be mis-matched, com-
plicating the synchronization process.

To properly conduct video validation, the two sources 
must be closely matched at all points to ensure that the 
movements displayed in video correspond to the cor-
rect movements in data. QValiData provides an inter-
face for synchronizing and aligning data sources. In the 
synchronization view, a movable marker in the data 
plotter, resembling the “pointer” on a standard video 
player’s trackbar, indicates the logger samples that are 
currently associated with the video’s playback position. 
If the video does not reflect the data at this instant, the 
user may move the marker to the appropriate location in 
data. QValiData then computes the necessary time off-
set to apply to the data. Similarly, the data playback rate, 
expressed as a ratio of data seconds to video seconds, can 
be adjusted by moving the “Video End” marker to com-
pensate for differences in clock speeds.

During the validation experiment, the logger was 
tapped or inverted in front of the camera several times 
at the beginning and end of each trial, to create move-
ment events that would be easily distinguishable from 
the bird’s natural movements. Depending on sensor type, 
other methods may need to be employed to create a dis-
tinguishable event. The timestamps at which these events 
occurred could then be used to facilitate the aforemen-
tioned synchronization process.

Video analysis
Due to the use of a wide-angle lens, the animal occu-
pied only a small fraction of the video’s total field of view, 
making it potentially difficult to see, even with high-reso-
lution recording. To make the animal more visible, QVal-
iData provides a video tracking tool that can magnify the 
image around areas of movement, enabling closer inspec-
tion of the animal (Fig. 4). In addition, the video tracker 
annotates the sensor data where these movements occur, 
facilitating the detection of interesting activity events. 
The video tracker serves primarily to detect the pres-
ence of motion in the video for validation purposes, with 
simple object tracking for video magnification as a sec-
ondary objective. Thus, its main purpose is to augment, 
rather than fully replace, human annotation, and requires 
close supervision to monitor its accuracy and correct any 
errors.

Any motion events that were not detected through 
computer vision but were still visually identifiable on 
video by the user were manually added. Movements that 
were not visible by either computer or human (such as 
when the bird flies out of view or is obscured by objects) 
were not annotated. The data were trimmed to exclude 
periods in which the animal was being handled to avoid 
false readings.

Video analysis was performed with OpenCV (version 
4.1.0-pre) [36]. Video frames first undergo a background-
subtraction step, which compares each frame with an 

Fig. 4  Magnification allows animals’ movements to be more easily 
seen in wide-angle video
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average of the previous frames, revealing areas of move-
ment in the current frame [37]. The resulting image is 
then smoothed with a Gaussian blur, converted to gray-
scale, and then analyzed with a contour finder to locate 
areas of the video with significant change, which may 
indicate animal movement. Areas with movement were 
tracked using the built-in CSRT tracker, whose output is 
then smoothed with a Kalman filter, which also assists in 
re-tracking in case the animal is temporarily occluded by 
other objects in the scene [38, 39]. All contiguous frames 
containing motion in a single activity event are compiled 
into a “motion path”, which is annotated in both video 
and data (Fig. 5).

Simulation
After annotations have been made, a series of simulations 
were performed whereby the raw data were played back 
to simulated bio-loggers in order to gauge their effective-
ness at detecting events of interest. Once a method or 
set of parameters was deemed satisfactory, the activity 
detector can then be implemented on bio-loggers slated 
for use in actual experiments.

Our bio-loggers recorded activity using the ADXL362 
sensor, a three-axis MEMS accelerometer configured 
with an acceleration range of ± 4  g and an effective 
bandwidth of 25  Hz (100  Hz sample rate with a low-
pass anti-aliasing filter) [40]. These sensors are capable 
of measuring accelerations due to animal movement in 
three axes with great precision, enabling a wide dynamic 
range of motion to be captured [9]. In addition, they 
sense the direction of the constant acceleration due to 
Earth’s gravity, known as static acceleration, which can be 
employed to deduce position changes [3, 13, 27, 41].

The ADXL362 contains an integrated hardware-based 
activity detector. Hardware-based activity detectors offer 
many adjustable parameters and the ability to detect 
complex movement patterns [42]. While less custom-
izable than activity detection implemented in the log-
ger’s firmware, hardware-based activity detection offers 
significantly reduced energy consumption by offload-
ing data processing from the logger’s main processor, 
allowing it to remain in a low-power state until record-
ing is necessary. The ADXL362 activity detector continu-
ally monitors all three accelerometer axes for changes in 
acceleration, and compares these changes to configurable 

Fig. 5  Motion paths (white line) are drawn on-screen to show animal movements. These are also marked in the data as short blue rectangles. The 
estimated position of the animal is automatically marked with a circle. For our particular logger, the data plotter displays acceleration (in units of g) 
in the X, Y, and Z axes
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thresholds to determine whether to transition to an 
“Active” or “Inactive” state (Fig. 4) [43].

When configured to use hardware-based activity detec-
tion in its lowest-power setting, known as “Wakeup 
Mode”, the ADXL362 polls the accelerometer sensor at 
6  Hz until the Active state is reached, at which point it 
transitions to full-speed sampling until it returns to the 
Inactive state [40]. In cases where an animal is inactive 
for long time periods, the reduced sample rate will result 
in further energy savings, albeit at the risk of potentially 
missing short events.

We incorporated a simulation model of the ADXL362 
activity detector into QValiData, exposing parameters 
that would otherwise not be adjustable during a real 
experiment. The simulation component of QValiData 
was designed to stream recorded data in a similar fash-
ion to how activity detectors would ordinarily receive real 
sensor data, but without any restrictions on real-time 
sampling rates. In addition to implementing our own 
simulation models, we have developed a programming 
interface to simplify the implementation of additional 
simulation models for other bio-logger types.

Evaluation of methodology
We performed a series of validation experiments follow-
ing the described methodology to demonstrate its effec-
tiveness at assisting in the selection of activity detection 
parameters. These tests were performed with the Dark-
Eyed Junco, using the ADXL362-based validation logger 
as our data source. For evaluating our methodology, we 
chose to compare the performance of various param-
eter and activity detection modes in detecting significant 
body movements, such as flying, hopping, and posture 
changes. Since the ADXL362 in wakeup mode samples at 
6 Hz during its inactive state and may not reliably detect 
very short movements regardless of parameters, move-
ments shorter than 0.5  s (15 video frames) in duration 
were excluded from performance comparisons.

Parameter selection
For our methodology evaluation purposes, we primar-
ily focused on three parameters in the ADXL362 activ-
ity detector: Active Threshold, Inactive Threshold, and 
Inactive Time. The Active Threshold determines the 
minimum change in acceleration from a reference value 
that must be encountered on any of the three axes to 
transition to Active (high-sample rate) mode. The Inac-
tive Threshold and Inactive Time, respectively, determine 
the maximum acceleration change in any axis to be con-
sidered inactive, and the number of consecutive samples 
which must read below the Inactive Threshold on all axes 
to transition back to Inactive mode (Fig.  6). Since the 
sample rate is 100 Hz when active, the units for Inactive 

Time correspond to hundredths of a second (0.01 s). The 
activity detector also features an Active Time setting; 
however, we chose to leave this at its minimum of 1 sam-
ple (0.01 s) since it is not used in wakeup mode [40].

We first set the Active and Inactive Thresholds to their 
maximum values, and the Inactive Time to its mini-
mum value. Then, the Active and Inactive Thresholds 
were simultaneously reduced in 0.05  g steps, in order 
to determine the minimum acceleration change needed 
to detect all annotated events. We considered an anno-
tated event to be detected when the simulation marked 
several sections, regardless of length, as “active” con-
sistently throughout its duration. This indicated that 
the activity detector was able to detect a wide range of 
motion within an annotated event, rather than only the 
single most active part. The thresholds were reduced 
until all annotated events were covered by “active” sam-
ples in such fashion, or until no further increase in event 
coverage could be made without introducing excessive 

Fig. 6  ADXL362 Activity Detection. A single axis of acceleration is 
shown for simplicity. (a) Initially, the activity detector is in the Inactive 
state, continually monitoring the accelerometer for movement 
that exceeds the Active Threshold (upper and lower horizontal red 
lines), relative to an initial “reference” acceleration level (center red 
horizontal lines). On the three-axis ADXL362, reference accelerations 
are independently determined for each axis to account for biases due 
to static acceleration. (b) When the active threshold is exceeded in 
any axis, the activity detector transitions to the Active state and will 
monitor the accelerometer for movement that does not exceed the 
Inactive Threshold (upper and lower horizontal blue lines), whose 
baselines (center horizontal blue lines) are determined per-axis by the 
first sample in the Active state. If the Inactive Threshold is exceeded 
in any axis, its reference is set to the previous sample’s value. (c) In 
this example, the Activity Detector is configured to require three 
consecutive samples to not exceed the Inactive Threshold in any 
axis before returning to the Inactive state. Thus, the Activity Detector 
does not yet transition, as it has only encountered two samples since 
re-referencing that do not exceed the threshold. (d) When three 
consecutive samples do not exceed the Inactive threshold in any 
axis, the Activity Detector transitions to Inactive once again. (e) The 
references for the Active Threshold are then set to the value of the 
first sample in the Inactive state
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false-positive samples. Then, the Inactive Threshold 
was halved to provide hysteresis. Finally, Inactive Time 
was increased until all annotated events were marked as 
“active” for the majority of their duration, or until no fur-
ther improvement was observed. This reduced the like-
lihood that brief interruptions in acceleration, such as 
gliding periods between wing flaps, would cause a corre-
sponding interruption in the recording of a single motion 
event. After each parameter adjustment, a simulation 
was run to evaluate performance. The parameters for 
each trial resulting from applying this method are sum-
marized in Table 2.

For each parameter, we calculated the median across 
the five trials, to obtain what we will term “Validated” 
parameters (Table  3). Prior to the development of our 
simulation-based methodology, we had estimated a set 
of activity detection parameters for the ADXL362-based 
logger, using unassisted video analysis without a simu-
lation component. The thresholds were determined by 
observing video of the bird during periods of significant 
activity, noting the approximate accelerations expe-
rienced by the logger during these periods, and then 
choosing a value that was low enough to capture the 
majority of such events. The inactive time was chosen to 
be long enough to cover any brief interruptions in motion 
that were determined to be part of a single activity event. 
These parameters were incorporated into an ultra-low-
power logger, known as the “Bit Tag”, that summarized 
data by counting the number of seconds that the accel-
erometer was in the “Active” state in a fixed time inter-
val. This set of parameters will be used as a baseline for 

comparison against the “Validated” parameters and are 
henceforth termed “Bit Tag” parameters (Table 3).

We then ran simulations using the parameters from 
Table  3, both with and without Wakeup Mode enabled, 
and validated their performance using motion events 
extracted from video.

Performance metrics
For each run, we collected statistics on both a “per-sam-
ple” and “per-event” basis, compiled into Sample Statis-
tics and Event Statistics, respectively.

Sample Statistics were defined as a count of raw accel-
erometer samples that fell into one of several categories: 
correctly identified samples, false-positive samples (sam-
ples marked as “active” when no activity was detected 
on video), and false-negative samples (samples marked 
as “inactive” when activity was detected on video). 
Since sample statistics are concerned with the perfor-
mance of activity detection across the cumulative length 
of recorded data, these would be of interest to loggers 
employing the asynchronous sampling method.

Event Statistics were defined as the total number of 
movement events, identified via video analysis, that were 
classified into the same categories, albeit with slightly 
different criteria. Movement events were counted based 
on “coverage”, i.e., the percentage of each movement 
event that was marked as “active” by the simulated log-
ger. Events with at least 50 percent coverage were con-
sidered correctly identified, while those with less than 
50 percent coverage were considered missed by the log-
ger and classified as “false negative”. Any sections of data 
that do not contain visually identifiable motion but were 
marked as “active” by the activity detector were assumed 
to have been erroneously marked and were classified as 
“false positive”. Since these statistics are concerned with 
counts of event statistics and somewhat normalize for 
event length, they tend to emphasize the performance 
of the activity detector in individual events and may be 
indicative of performance with summarization methods 
that record event counts. Although other statistics are 
obtainable in the simulation, these were most relevant to 
our experiment goals.

Counts of samples and events were summed across all 
five trials to obtain a single statistic for each set of simu-
lation conditions.

Results
100‑Hz sampling mode
When simulations were run at the full 100 Hz data rate, 
the validated parameters yielded a somewhat higher 
activity identification rate, particularly for shorter 
events (Fig.  7) at the expense of a higher false-posi-
tive rate (Tables  4, 5). This is to be expected, since our 

Table 2  Parameters chosen through simulation-based 
validation, per trial

Each trial consists of 20–30 min of logger and video recordings for 4 individuals

Active thresh. 
(g)

Inactive thresh. 
(g)

Inactive time (s)

Trial 1 0.25 0.125 0.22

Trial 2 0.35 0.175 0.30

Trial 3 0.3 0.15 0.21

Trial 4 0.35 0.175 0.11

Trial 5 0.4 0.2 0.20

Table 3  Final parameters used in performance evaluation tests

Active 
threshold (g)

Inactive 
threshold (g)

Inactive time (s)

Validated 0.35 0.175 0.21

Bit Tag 0.5 0.5 0.20
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parameter selection procedure prioritized minimizing 
missed events, trading off event selectivity for sensitiv-
ity. This trend holds for both sample and event statistics. 
Although both sets of parameters experience a high event 
error rate due to false positives (Table  5), these false 
events are very short (Fig. 8). This is consistent with the 
substantially lower sample error rate (Table 4), implying 

that these errors do not contribute substantially to the 
total length of recorded data.

Wakeup mode
When wakeup mode is enabled, the number of missed 
samples and events increase considerably (Tables  6, 7). 
This can be attributed to the slower reaction time of the 
activity detector, as the sample rate is reduced to 6  Hz 
in the inactive state. Most of the missed events are quite 
short (Fig. 9), with the majority of events longer than 1 s 
being successfully detected. In fact, with the reduced 
sample rate, a substantial portion of false-positive events 
and samples were eliminated, resulting in a decrease of 
both sample and event error rates (Tables 6, 7). As with 
the simulations performed without wakeup mode, the 
false-positive rate comprises the majority of error events 
(Fig.  10), but these events are usually less than 1  s in 
length and thus do not contribute substantially to the 
total sample accuracy.

Discussion
Our results show that, with the assistance of simulation-
based validation, activity detection parameters can be 
selected to optimize for a particular data collection strat-
egy (such as minimizing false negatives). In addition, 
these parameters can be directly and quantitatively com-
pared to each other by simulating on the same data set, 

Fig. 7  Histogram of correctly identified events, by event length, without using the Wakeup mode. “All Events” represents the total number of 
motion events of a particular length that were identified during video analysis. “Validated” corresponds to events detected by the simulated 
activity detector when configured with parameters found using our validation methodology. “Bit Tag” corresponds to the performance of the 
activity detector using parameters determined prior to the development of our current methodology. The histogram bars are “overlapped” to show 
differences in event counts between methods

Table 4  Sample statistics, 100 Hz

Sample rate

Correct samples False-
positive 
samples

False 
negative 
samples

Error 
rate (% 
samples)

Validated 550,382 79,710 6415 13.53

Bit Tag 583,569 41,556 11,382 8.32

Table 5  Event statistics, 100 Hz

Sample rate

Correct events False-
positive 
events

False 
negative 
events

Error 
rate (% 
events)

Validated 525 961 50 65.82

Bit Tag 471 828 104 66.43
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which would not have been possible in a non-simulation 
validation experiment and can be helpful for both logger 
and experiment design.

Effect of wakeup mode
Our simulations revealed that a power-saving feature on 
our loggers can reduce the occurrence of false positives, 
with the tradeoff of missing short events. Many of these 
short events consisted of short twitches and body posi-
tion changes and did not typically occur when the bird 
was in motion. Additionally, depending on logger system 
architecture, excessive triggering may have a substantial 

impact on energy usage, especially if the logger consumes 
additional energy to transition from the inactive to the 
active state. Thus, the use of the wakeup feature could be 
beneficial to studies interested only in significant animal 
movement or locomotion without the added expense of 
mis-triggers due to short events.

If the recording of short events is desired, the logger 
can be configured to detect activity at the full sample rate 
regardless of activity level, which would increase the like-
lihood of catching such events. However, this may lead 
to a higher false-positive rate and significantly increases 
energy consumption during inactive periods, from 0.27 
µA (wakeup mode enabled) to 1.8  µA (wakeup mode 
disabled, 100  Hz sample rate) [40], in addition to the 
energy consumption associated with waking up for addi-
tional events. Thus, the selection of a recording strategy 
may be motivated by energy considerations in addition to 
accuracy.

Occurrence and management of false‑positive events
False-positive events comprised the majority of errors 
encountered in our validation experiments, and in fact 
caused the validated parameters to report higher error 
rates in some cases. As defined by our experiment pro-
cedure, false-positive events occur when the activity 
detector under test marks a portion of data as “active” 
when no movement was detected in video. Many of 
these events occurred as a result of small animal move-
ments that were not detected in video analysis, or 

Fig. 8  False-positive events in each simulation, arranged by length. False-positives events are those that contain no samples marked as part of a 
motion event by video analysis. The majority of such false-positive events are very brief, lasting no longer than 1 s. The bars are “overlapped” to show 
differences in counts between the groups

Table 6  Sample statistics, wakeup mode enabled

Correct samples False-
positive 
samples

False 
negative 
samples

Error 
rate (% 
samples)

Validated 571,632 52,284 12,591 10.19

Bit Tag 593,209 25,307 17,991 6.80

Table 7  Event statistics, wakeup mode enabled

Correct Events False-
positive 
events

False 
negative 
events

Error 
rate (% 
events)

Validated 444 437 131 56.13

Bit Tag 375 339 200 58.97
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possibly due to noise in accelerometer readings. As 
shown in both sets of validation experiments, these 
false-positive events are usually very brief and do not 
contribute much to the total recording time despite 
their high occurrence. If the reduction of these events 
is desired and the potential omission of legitimate 
short events is acceptable, loggers can be configured 

to automatically reject events shorter than a predeter-
mined length.

Validation experiment
Our methodology assumes that parameters being devel-
oped using animals involved in the validation experi-
ment are applicable to animals in the final experiment. 

Fig. 9  Histogram of correctly identified events, by event length

Fig. 10  False-positive events in simulations using wakeup mode
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Depending on animal behavior characteristics, the move-
ments produced by animals in the controlled validation 
environment may not necessarily reflect their actual 
movements in the wild. Often, the validation environ-
ment is a small room illuminated with artificial lighting 
which, while favorable for video recording, may not be a 
suitable environment for recording some behaviors. Even 
if validation were to take place in a more natural setting, 
the proximity in time to human interaction (such as dur-
ing logger attachment or animal observation) has the 
potential to affect the animal’s behavior [5, 44, 45]. How-
ever, observer effects may be of less concern in studies 
where the kinematics of individual actions, rather than 
overall behavior, are of greater interest.

The loggers and parameters from our experiment 
were intended to be used primarily in experiments with 
captive juncos, and the activity of interest was the sim-
ple presence or absence of locomotion. Therefore, we 
believe this assumption would be true for our purposes. 
However, in other cases, it may be necessary to perform 
validation experiments in various different settings and 
to perform other preliminary experiments to character-
ize any potential differences in behavior between ani-
mals in the validation experiment and those in the final 
experiment.

Ideally, a validation experiment should draw upon data 
from several trials. Although simulation greatly reduces 
the number of trials necessary for a particular individ-
ual, it would be beneficial to incorporate validation tri-
als from multiple individuals to control for differences 
in individual behavior. As we have observed from our 
experiment data, each animal produces unique activity 
patterns, varying in movement frequency, activity inten-
sity, and other factors. Because of this, the occurrence of 
activity event misclassifications is unavoidable as activ-
ity detection is not always perfect. As a result, one must 
choose between recording all events of interest and pos-
sibly recording non-interesting events, or only record-
ing events of interest and accepting the possibility of 
missed events. The decision will ultimately depend on the 
nature of the animal and bio-logger used in a particular 
experiment.

Our current data set is small, consisting of five trials 
with four individuals. As a result, some movements or 
behaviors may not be represented equally or in all tri-
als, which may influence the parameters selected. Addi-
tionally, environmental factors such as objects placed 
in the test room can influence behavior. For instance, 
the absence of tree branches in the test room resulted 
in a complete absence of short-range flights in one trial, 
which raised its minimum acceleration threshold for 
flight detection and thus increased the median thresh-
olds for validating other trials. Thus, future experiments 

should collect data from as many unique individuals as 
possible, in settings that most resemble the animal’s natu-
ral habitat.

In its current iteration, QValiData is only able to track 
large movements and may not be able to automatically 
annotate other kinds of behaviors with small movements, 
such as feeding or preening. This is a limitation of the 
present video tracking implementation, but should have 
little effect on validation if behaviors can still be identified 
by eye and manually annotated. Likewise, our methodol-
ogy is only able to validate the detection of movements 
that can be reliably recorded by bio-logger sensors. For 
example, bio-loggers with accelerometer sensors may be 
unable to detect motions with very little changes in accel-
eration regardless of activity detection method. There-
fore, proper sensor selection plays a crucial role in the 
effectiveness of validation for particular types of motion.

Development of QValiData
Prior to the development of QValiData, our workflow 
consisted of video magnification and motion tracking 
in Blender (version 2.79) [46] and simultaneous play-
back and data annotation in ELAN (version 5.1) [47]. 
Although Blender contains powerful motion tracking 
and video processing utilities, it was unable to consist-
ently track flying birds, as wing flapping and erratic 
movements interfered with its motion capture system. 
This process alone would take approximately one hour 
for a 20- to 30-min video. ELAN allowed us to simulta-
neously play back video alongside data tracks and insert 
time-stamped annotations into the data. We found that 
pre-rendering videos with motion tracks was unneces-
sarily slow, requiring several hours of processing time, 
and it was difficult to track and manage files across dif-
ferent applications. Thus, we were motivated to develop 
a bespoke software tool that could manage experiment 
files, play back synchronized video and data, render 
motion-tracked video in real time, and run simulations of 
bio-logger data. Although the present iteration of QVali-
Data still requires some human intervention for video 
annotation, it has virtually eliminated the need for video 
pre-rendering, which represented one of the most time-
consuming portions of the workflow.

Simulation performance
One of the primary advantages of simulation is that using 
pre-recorded data allows the simulation to run faster 
than on real hardware, as it eliminates the need to wait 
for real-time sensor data. In our testing, a 20-min trial 
containing over 100,000 samples of accelerometer data 
could be simulated on a desktop computer in less than 
one second. Another advantage is the repeatability of 
tests, since different activity detection methods can be 
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tested on a consistent set of movements and directly 
compared with one another, facilitating quantitative 
comparisons and iterative refinement.

Expanding QValiData: frequency‑domain example
Future validation experiments should also explore this 
methodology’s ability to predict activity detection param-
eters for other bio-logger types and animal species, as 
well as for other movements of interest. For instance, 
special considerations may need to be made for sensors 
with lower sample rates or resolution, or for animals 
whose movement types are more difficult to distinguish 
from one another [20]. Although the methodology is in 
theory adaptable to such changes, real-world data would 
be beneficial in assessing its capabilities under different 
conditions.

One possible area of development is the implementa-
tion of activity detectors based on frequency-domain 
analysis. Although our present ADXL362 activity detec-
tor is sufficient for detecting a wide variety of energetic 
movements, it is only capable of detecting changes in 
acceleration. Thus, it may have trouble differentiating 
certain kinds of movement, such as wing flapping and 
fast posture changes. Although both wing flapping and 
fast posture changes produce similar short-term (within 
a wing-beat period) acceleration changes, wing flapping 
produces periodic changes of a relatively consistent fre-
quency. However, the present activity detector is unable 
to distinguish between periodic and non-periodic accel-
eration changes.

Periodic acceleration change occurs in many kinds of 
animal locomotion, such as flying, walking, or swimming, 
and may be used to estimate energy expenditure, or to 
distinguish them from other movement types [48–51]. 
Particularly relevant to our study of the Dark-Eyed Junco 
is the detection of zugunruhe, or migratory restlessness, 
in captive individuals, which manifests as wing flapping, 
even when confined to cages [52]. An activity detector 
designed to detect periodic movements can make use of a 
digital filter to extract or exclude certain frequency com-
ponents from movement data. For instance, a high-pass 
filter may be used to remove the constant acceleration 
due to gravity, while a band-pass filter centered around 
a bird’s wing-beat frequency can be used to detect flight 
periods [49, 51].

In applications where energy limitations are less of a 
concern than storage, more advanced data analysis or 
classification methods that would ordinarily be done post 
hoc, may instead be implemented onboard the bio-log-
ger itself. This would result in reduced sample memory 
usage at the cost of increased energy consumption due to 
added processing. For instance, movement classification 
involving decision trees or variability analysis may simply 

store the classifier output instead of raw data. There exist 
bio-loggers with energy-harvesting devices that are con-
strained less by energy than by memory, creating a pos-
sible use case for this method [20]. Nevertheless, these 
more sophisticated classification methods must still be 
validated to ensure their correctness.

Inferring behaviors from data
Although the present validation methodology provides 
an approach to the question of how to determine the 
correctness of various data collection strategies, it does 
not currently address the question of how to directly 
infer behaviors from collected data. This topic has been 
addressed in other studies that have developed various 
behavior classification methods for sensor data [6, 19, 
20, 26–29]. However, if such classification methods were 
to be implemented in a bio-logger simulation model, it 
would be possible, using our simulation methodology, to 
assess the accuracy of the behavior inferences made using 
such classifiers.

Combined video and sensor data analysis
Video annotation can be improved by incorporating sen-
sor data into the motion tracking process. Currently, 
without human intervention, the video tracker must play 
through all frames to detect motion, which leads to long 
processing times. With the assistance of a simple filter 
that can detect periods of low or no activity in the sen-
sor data that are certain to contain no interesting events, 
the video tracker will be able to skip these portions auto-
matically. This filter will necessarily over-approximate 
the behavior of the activity detector to be validated, as it 
should be able to narrow the search space of sensor data 
without inadvertently omitting potentially interesting 
events.

Conclusion
The use of compressed recording methods requires care-
ful characterization of an animal’s movements and the 
bio-logger’s response to such movements. This often 
requires several rounds of experimentation along with 
visual observation to ensure that the bio-logger is able 
to record activities of interest, but this leads to time-
consuming trial-and-error experiments with animals that 
may not always provide consistent movement data. Our 
proposed methodology alleviates some of these issues 
by using simulated loggers, enabling activity detection 
methods to be quickly refined and evaluated with a reus-
able set of real data. Compressed sampling in bio-logging 
allows for the collection of activity data over increasingly 
long intervals and for smaller species, where energy and 
memory budgets are prohibitively constrained for con-
ventional continuous recording methods. The use of 
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proper validation procedures ensures that the activity 
detection driving compressed recording operates cor-
rectly, increasing confidence in the use of these methods 
for long-term studies of animals in motion.
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